ATL notes
April 2005

Use the idea of the bare-bones 3gl language include this in ATL and also have a minimum of structures and operators but include associative arrays etc.

Delete one item from a queue

a -> null

Clear a queue



a => null

Send a whole structure as a single item

Seemlessly add fields to a structure (like SAS does),

e.g. if ‘a’ has elements ‘x’ and ‘y’, then


a.x + a.y -> a.z

automatically adds the field ‘z’ to the structure

ATL is like SAS in that the loop is implied, there is no explicit loop through the records in the input data set.

What about sycronisation, e.g. bank account with interest and replayments, interest must be calculated after repayments for given date but before future repayments.

“Prime vector” i.e. time, run all nodes for 1/1/05, then run them all for 2/1/05 etc.

Rearrange/evaluate infix expressions, e.g.


<< x + y * z >> -> k

Equivalent to 


y z -> * x -> + -> k

??

operations on a ‘var’

++ -> x;


1 + -> x;


y -> x;


x -> a

clear out a queue !a;

make a copy of a queue


!b;


~a => b;

A queue is like a list (linked list) in lisp, except that it is a destructive read (although ~a gives non-destructive read of first element)

Default to non-destructive read for items in the condition of an ‘if’ or ‘while’.

Include the SAS concept of data tables, where (i) can write one statement that is automatically applied to each row, and (ii) can add or delete variables without having to recreate the whole table

Include all C expressions and memory structures

A ‘new’ operator but no ‘delete’ operator.

State-invariant functions, i.e. inputs to a function completely specify the outputs (what do you do about I/O? also seeding a random number generator, internal caching (can still be state invariant but requires ‘static’ variables to implement)

Use the syntax fred(a, b : c, d) to specify output variables c and d, using this syntax also implies pass-by-value inputs, although input variable can also be output variable)

Pull-triggering as well as push-triggering

e.g. rand() -> a;

Optional limit on a queue size, sender is halted if it tries to push into a full queue and continues when queue is reduced, timeout for debugging.

Ability to multiple nodes to write and/or read to/from a queue? Ability to send the queue ID through a connection and link to the queue.

Data types for string, Boolean, date/time/datetime, int/double?

SQL operations on internal data?

Write as much code with as varied applications as possible to test and refine the structure.
Process a loop


While ?a <> 0



a -> x;



sd = sd + x



x -> b


Wend


b => a;

alternatively

node fred

{


in s;


{



Sd = sd + s;


}

}


a => fred.s

is it worth developing a simpler syntax if this will be common (what does lisp do?)

could do something like


foreach x in a



sd = sd + x


next

but don’t like the term ‘foreach’ much

maybe start with the basic structure first and write a lot of code and see what pops up, rather than trying to second-guess useful functions (provided that it is POSSIBLE using the raw syntax).
Could use {} for a chain if this helps, as the program statements are a chain in themselves,

e.g.


{1 2 3 4 5} -> x;

Or


{1; 2; 3; 4; 5} -> x;

Need to decide what to do for functions that return two values, at the moment it’s implemented as 


1 2 -> a -> i;     a -> j;

But that is pretty messy and also requires the function to be state-sensitive, could use


1 2 -> a -> i j;

Which is simpler and more intuitive, but the problem is in multiple chains you can’t tell if the ‘j’ is a second return parameter or a separate value altogether to be sent to the next link in the chain.

Alternatively could use


a{{1 2 : i j}}
which can be used in chains as


5 a{{1 2 : i j}} 10 -> z;

Support for vectors, complex numbers, matricies, sets (e.g. APL set functions on matricies)

What about operations on a whole chain like apl (and lisp?) do,


i.e. a * 2 -> b


gives


a = 1 2 3 4


b = 2 4 6 8

this is pretty powerful but is it really any use in practice? On the other hand this is pretty much what SAS does, except that SAS is not a true group operator because the ‘first.orgn and ‘retain’’ makes it position-sensitive in the list, although maybe that’s necessary to make it useful in practice.

Have a shorthand notation for one-line functions, e.g.

Node premium_calc

{


In


{



Remun * rate -> out


}

}

Replace with something like 

Node premium_calc

{


remun * rate -> out;

}

Then can use


Inset => premium_calc => output

This introduces a whole host of problems

(i) easy to stuff all the input values into the input queue

(ii) but since ‘premium_calc’ executes asynchronously, how do you know when its finished stuffing data into ‘output’, so you can close it/start next line of code? Do you have to halt until it is finished in case the next line of code uses data from ‘output’? this would defeat the whole purpose. On the other hand, you know that this instance was only created for this line, and you know when input queue is empy and code finished executing, so should be able to know when to close it, also should be able to keep going and the code that uses ‘output’ will just have to wait until the data appears, but what about

a. inset => premium_calc => outset

b. outset => calc2 => outset2

this could end up the multiple instances all half finished – a total mess and impossible to debug, although could be powerful in concept.

Have a debugging option to halt at each step until entire step is finished processing.

Another problem above, ‘calc2’ might have an empty input queue but its not safe to stop it because ‘premium_calc” isn’t finished, so really need an end-of-input market to be sent when a temporary instance ends. What happens if two nodes are feeding a single ‘calc2’? could handle this will a garbage collection approach of keeping a count of feeder nodes and terminating when it drops to zero, but if the ID is sent through a pipe how do you know if people are finished using it or not?

Allow signals to be sent in data queues, e.g. define SIG_CLEAR and ensure that they’re not defined as just a number, i.e. you could send any valid number and it wouldn’t be confused with a pre-defined signal.

Intial implementation defined operators as just nodes which is simple and powerful but this may be overridded by the convenience of infix notation for expressions, which would require infix parsing at a minimum and preferably operator precedence as well.

Don’t try too hard to increase speed/efficiency because its not worth it especially in the early stages and it will all get thrown out anyway as the definitions evolve.
Throw out the int/Boolean stuff and just use doubles, SAS still does it after 30 years (but maybe include the syntax for ‘int’ etc so it can be put in the code even if it doesn’t do anything?).

How about operations like sum(a.x), adds all items in the queue into one total (a bit like the SQL aggregate functions, SUM, COUNT AVERAGE etc)

The simple fact is that most general-purpose programming doesn’t involve a lot of numerical processing (except for data analysis (SAS), APL number crunching, simulation etc), its mostly manipulating complex data structures, try both general purpose (edis) processing and number crunching.

What about an equivalent of the mathematical sum (sigma) function, e.g. product(i,0,11){…}

‘repeat times { … }’
repeat loop, also have a VB-style ‘for’ loop? Could also be used with ‘repeat ?x {  }’ to repeat the number of times for the elements in a queue, note would only work for local queues in the node, as connecting queuese could have more items appearing at random. Alternatively could use ‘while ?a <> 0’, this requires that the ‘repeat’ condition be evaluated once but the ‘while’ condition every time, also the ‘while’ might be better to clear out connecting queues until triggered again later.
Monte carlo simulation:

    Const NUM_CYCLES = 10000

    set_sd.clear

    monthly_vol = 0.1

    total = 0

    For cycle = 0 To NUM_CYCLES - 1

        price = 100

        For this_month = 0 To months - 1

            If price <> 0 Then

                price = price * (1 + nrand() * monthly_vol)

            End If

        Next

        set_sd.add_item 0, (price / 100) - 1

    Next

'    MsgBox set_sd.sd(True)

End Sub
repeat 1000

{



nrand(months,0,monthly_vol) => rand_values



<< 100* price * Product(rand_values)  / 100 – 1 >> -> price_values


}

Print stdev(price_values)

Methods of handling parameters, parameter can be variable, queue or combination, e.g.


Fred( 1 2 3 4 # 5 6 : qout )


Fred (x qin : qout )

Methods of expressing options, which method to implement?

Unique | descending

bitmaps (only works for Boolean options)


“unique” “direction” “descending”
queue of string options


Diection:=descending


named parameters


False, true



complete every option

Queue separator/terminator – ‘#’

Matrix operations – multiply, transpose (check portfolio risk calculation), extract certain columns to make a new table

Try and make it an open architecture, not sure if possible, but like libraries/SAS, e.g. call dll, be called by dll, interprocess communication (COBRA?), call MFC/Borland graphics functions, call.be called by Excel etc.

Associative arrays

Split function to split a single table object into a list of separate items, and function to combine a list of rows into a single table object?

Descign goals


To promote programming productivity by enabling code that accomplishes complex functions with a small amount of code, is clear, easy to debug and avoids being subject to common or subtle bugs


To execute quickly and have modest memory usage


To include the major functions and data structures that are useful in general, mathematical and data processing.


To support fine-grained parallel execution, with asynchronous exetuction of blocks and data transfer through pipes.


To have simple, flexible and powerful string processing.


To integrate with other environments, through data passing, calling and being called


To enable development of quick and simple programs without excessive overhead involved in creating a program


To be accessable and useful to beginner programmers while also providing the robustness and functionality required for large and complex systems.


To have extensive compiler checking, run-time checking and debugging facilities to enable production of high-quality code.

TO result in code that is of high quality, easy to maintain and extend and robust


To avoid language features that may lead to common bugs, subtle problems and difficulty in maintenance, such as global variables and ‘goto’ statements.


To focus on simplicity and the minimum practical set of operators, functions, keywords and operations is used to support the functions of the language.

To be based on generality as far as is practical, so all combinations of operations/functions are supported, e.g. ‘PRINT expression’ rather than ‘PRINT variablename’, which is much less powerful.


Provide language structures for things that can be optimized at machine code level (e.g. increment) i.e. don’t force programmer to do it in code when it could be done more efficiently by the compiler

Simple and efficient support for strings natively in the language.

Minimalism – include the minimal set of structures and operations, leave out unwieldy and little-used language features (unless particularly difficult to do manually), i.e. like C and VB (subset of), not (what were the early languages that were very complex – ADA? PL/1?) a sort of RISC for software. – promoted simple and clean code, easy to read and maintain, less chance of bugs in compiler or application code, faster and tighter compile process.

Clarity – simple constructs without complex precedence rules etc, no separate or confusing syntax for different functions.

Design the language and development to reduce the chances of bugs, especially subtle and hard-to-detect bugs, e.g. implied loop means no chance of out-by-one in loop counter or wrong index variable, also clearer code and easy to read, strong type checking where possible, no implied conversions – force explicit cast to highlight potential mistakes, compiler option for range checking of arrays, safe pointers, store type information inside data that is sent around, etc.

To avoid unncessicarliy difficult constructs, and not to prevent the programmer from using difficult concepts such as recursion and nested structures, but not to make difficult concepts necessecary for basic use of the language.

To include the essential general-purpose facilites that are required in system development, either as part of the language or as part of the standard bundle of facilities, such as simple and efficient string processing, mathematical, scientific and engineering functions, dynamic data structures such as trees, sorting and so on.
What about engines with a single entry point, what abouy combining all I/O functions into one external interface (re-read black art of programming).

Compound data structures


Index by number, name or string, e.g. blah[5][fred][“bill”] = 1;

Treat whole colum as a data item, e.g fred[5][] = x


Move corresponding, like cobol, i.e. copy fields with same name to destination structure


Static or dynamic


Allow elements in an array to have different data types


A ‘C’ struct is an array, indexed by name, where each elemement has a different type


Allow x[fred][bill], can do this in C using normal array and #define for the names, but not supported natively by the language, also only allows single type for all elements.


Have a leading keyword ‘fastarray’ that only supports single-type arrays, constant structs etc to highlight to the programmer what types to use for fast performance.


Basic essentials to implement – arrays 1, 2 dimensions, structures, arrays of structures, one-dimensional associative arrays
Note the fundamentally memory is a single one-dimensional array, so any combination of indexes/names must resolve into a single offset into memory (apart from link lists/hash table lookups etc), i.e. fred.bill[10].jill must resolve into a single net offset.
Equation solving and rule-based expert systems, alternative problems for programming to solve.

Major applications of programming



Data processing – text & numbers (e.g. the plug-in numbers in a loan contract)


Machine control, hardware control, operating system resource control etc


Application development (data processing etc)


Compilers, other technical programs e.g. geographical mapping, simulation

Finite state automaton – send a single bit of data around through the queues to represent the current pointer in the input queue, and tokenise the input this way, i.e. wherever this arbitrary bit of data resides is what state the system is in.
Example of an equation inexpressible as a single value


X^2 + x  = 1


Y + y^2 = x + 2*x^2

What is data, what is computing – representing concepts, what is a number, mapping one set of numbers to another (equation/assignment), declarative vs. sequential, enum types (red,green,blue) etc. what is text, equation solving, finite state automatons, data processing, equation rearranging.
Harware interfaces are a good example for sources of methods of co-ordinating independent processes – handshaking, asyncoronous/synchronous transfer etc. master/slave, rings etc whatever all these things mean.
Computing – applying a set of concepts to a set of facts to generate a result (my definition), e.g. tax rates, screen layouts.

A => x 
send one

~a => x
send one copy

^a => x
send all

~^a => x        
send all copy

e.g    a, ~b, ^c, ~^d, => x

declarative languages: SQL, knowledge system rules, equation solving, report/screen payouts/dictionaries
Have a chapter explaining the power of declarative languages, and suggesting using ATL as the low-level language to create a declarative compiler/interpreter.

ATL is a relatively low-level language, although it does have set operators, associative arrays etc.
Create a general-purpose declarative language as a separate project from ATL.

Declarative languages


Advantages



Generally much smaller, simpler and easier to understand code than sequential



Less chance of technical bugs, like out-by-one in loop or dudgy pointer



Performance – may be faster due to including complex optimizations and methods not practical to include in one-off sequential programs, e..g. hash tables. Also, can take advantage of machin-dependant features (although usually don’t as written in a 3GL themselves?)


Disadvantages



Each system only covers a specific type of application, e.g.relational data manipulation



Performance – may be slower due to overhead of compiling the language and developing an executing strategy, also may have to guess at best approach, whereas a programmer has additional knowledge (e.g. knowledge of the actual data), so may be able to code a faster method, particularly for small tasks rather than large systems



Compiler/interpreter may be large, slow (and expensive?)



Resource hungry for memory and cpu time

A term in a chain can be

A constant


An operator, e.g. +


A variable name


A queue name, either local or in/out


A node/function name


A name representing an instance of a node/function

Example


^~a, b, ^[[ c d => e]], f  => g => h

Do not allow multiple items to the right of an => operator? Still need to sort out how to return multiple items into several variables, don’t use a( b : c) if possible because the chain notation is clearer and more general.

In standard 3GL a variable is a tag for a region of storage, in ATL it is a tag for an instance of a node or a group of data items, conceptually every ATL variable is a pointer (to maybe a linked list etc), so this is a bit more abstracted than 3GL code, or is this the same thing?
Don’t rely on executing each step until finished, generate automatic end-of-list markers where relevant in sub-expressions so that in theory each sub-expression could execute simultaneously.

Include ‘contiguous bytes fred[100]=0xffee’ to allow for bit-wise operations on memory such as creating a heap or has table, also allow  for writing to hardware ports (memory mapped locations or ‘out’ machine code operations).

Include inlining into the machine code (i.e. don’t use queues in actual machine code, replace with direct code ) of nodes/functions in compiled code to improve speed.
Allow variables to have a ‘null’ value, or does this create more trouble than it solves? Probably.

For a variable, it is implied that a ‘send copy’ is done, i.e. don’t waste time on resetting to zero or null after a send.
For an aggregate structure, set variable to null after send if not a send-copy, because conceptually the data item is moving to a new place, also we don’t want two pointers to the same thing existing otherwise syncronisation problems.

Unique ideas in ATL


Simultaneous asynchronous execution of nodes


The idea of a data item moving from one place to another


Chains sent to queues/though pipes

Short section on general differences from other languages, and specific differences from each of the major languages

Example of differences


a = b;

standard 3GL ‘change value of a to equal value of b’


b => a;

ATL, ‘move data item from b to a’

Better not to allow multiple references to a data item, but might need to allow multiple references to a node queue?, so several parties can put into the input queue (what about multiple parties getting from the queue, and syncronisation issues?)

For temporary instances of a function in the middle of a chain, can tell when its finished by (a) input queue empty and (b) finished executing (set executing=true (active = true?) on add to input queue or pull from output queue, set executing=false on reaching end of code and input queue empty), but what if several temporary items in a row and first one hasn’t sent items to second one yet?
What about detaching a queue from its name and sending it as one item
Possible syntaxes



Fred( a : b )






Fred( a ) => b



A b c => d e f => g h 

how to interpret this



A => b c d
allow maximum of one of b,c,d to be a queue, others must be one item only, put head of output in b or d?

Have an error for ambiguous chains and mixed “and”,”or” conditions to improve clarity by forcing use of brackets, instead of relying on default precedence.

Syntactically treat the following as the same thing

function name, 

function reference 

queue name 

variable name

constant
(except can’t send to a constant)

the same thing, 

node lifetime – statement, whole node. What about


1 -> a;

2 -> a;

a -> b;

requires longer lifetime, could be done with dynamic instance but that would need extra lines of code. Also, if you make it longer than one statement, how do you reset it, also bug with state dependant on previous actions in the node – unstable and error prone, however also how do you know that its safe to cancel it when it might be storing data internally for the next call to happen

some way to distinguish nodes/funcs that are not state-dependant (i..e. affected by previous operations) as this is a very important issue.

Atl is a container, transport and control flow language, all it knows about is Boolean and blocks of arbitrary data (but still need to know the structure to duplicate strings, can’t just do a binary block copy?), all operations on the data are done externally to the language itself. Require fixed length strings? Pretty crappy but would increase speed and also allow for blind copy of binary data.
Uses of pointers

As links in dynamic data structures


Allow links


To alter bitmapped area of memory


byte array reference with specified memory location, packed/contiguous access


For string manimulation and anlysis


built-in string functions, x[3] to access one char

For var ‘one’. allow empty/null, or is this a bad thing (but would be consistent with the name being a ‘tag’ for an item of data)

What about sending a message to an item of data, e.g. ++ -> x is this a good concept or not, what does it really mean, or is there some kind of ‘virtual node/function’ involved, e.g. an invisiable node conducting the data operation.

Fundamentally a computer program consists of a set of data and transformations of the data i.e. a program creates a mapping of one set of data onto another set of data (except for industrial machine control?) e.g. a compiler (source to machine code), data processing reports, but not operating system resource control? What about software tools, e.g. spreadsheets, word processors. Group life premium run, map current data + date of run onto updated data

for type checking ( a bit messy though)
node fred()

{


in (types num, num : num)


{



in => x;



in => y;



x ** 2 + y => out;


}

}

Type ‘bits’ – a 4 byte integer, operators ‘=’, ‘<>’, band, bor, bxor, bnot, constant ‘ffff’x; (not “<=” because this is not a bit operation, it assumes it is a number) convert to/from a double, ‘<<’ shift right
Syntax for aggregate data access

Fred[10][bill][“blah”] = 20;


i.e. array index 10, struct field ‘bill’ and linked list key “blah” to get to the actual item. Also


fred[10] = whole struct 

(needed)


fred[][bill] = xxx

extract a single column, desirable but complex to implement and also how to treat it for various operations.

Have a type 1 and type 2 (advanced) version of the language and define what a compiler must implement in each case.

Aggregate data structure issues


Treat an entire row or column as an object for copying and matrix functions


Allow a reference of the type fred[bill][mary]?


Allow looping through all fields or all items in an ass array?


Allow elements in a normal array or ass array to have different types?


Separate type for hash table (large and no order/looping?), linked list (small lists, looping), tree (sorted looping) etc.


Allow field name to be dynamic at run time, e.g. fred[x] where fred is a struct and x is a variable

Type checking, max possible at compile time


Is it better to just not allow run-time typing to simplify implemention, increase code speed and reduce ambiguity?


Use smart optimization (e.g. look at actual use of the variables etc) and compiler hints in the code to speed things up.


Have the type (list, has table etc) as a hint rather than definition as technically any data structure could be used with the same syntactic and semantic code, its just an efficiency question? Guess the data type from usage? (e.g. does the code use looping though the array?) probably still need an (optional) hint because don’t know likely size.

Don’t allow send-all within expressions, i.e. ^x + 2 => z, or treat it as add two to each element individually, potentially powerful but could be more trouble than its worth.
Allow ability to set a single column in a matrix as well as get a single column in a matrix.

For matricies define x * 2 => x as multiply each element in x by scalar 2 any copy resulting matrix back to x.

Table and matrix operators allow (in theory) expression-level parallelism.

Essential operations on tables


Duplicate entire table into another variable


Perform a block of code on each element


SAS/SQL type merge


Split single table into separate variables for each row? (i.e. to send as a stream of data), also merge a stream into a single table variable (but note that SAS doesn’t do this so it may not be necessary?).


Treat a text file as a table?


Sort (but note that definition of a set is an unordered collection of items, so avoid explicit sort where possible, e.g. merge automatically sorts input if not already sorted)

Reasons for a sort

To change the order of printed output


To enable a key-based merge

To enable a SAS-type “first.x”

To allow binary chop searching

Syntax for aggregate data structures:

var bill[collection 

fred int, 

jill [array 100 [array 200 int]], 

mary aa int

];

bill[jill][10][20];

bill[mary][“a”];

bill[fred];
var bill2[aa [collection roe [array 100 int]]];

Bill2[“sam”][roe][10];

Internal operations – ‘detach’ a data blob from the variable name pointing to it and ‘attach’ it to a new variable.
ATL is one of the algorithmic sequential languages (check proper name), i.e. program constructs represent operations to be performed rather than statements of objective fact (i.e. declarative languages) (except for the embedded SQL), even matrix operators are just multiple operations.

A declarative construct is a mapping, i.e. it describeds the result structure in terms of the input structures.

All programs ultimately just produce an output set by drawing on and transforming input data? What about machine control, although even more this uses input signals to generate output signals. If you can describe the mapping then an internal interpreter can do the actual processing for the  transformation.

Major areas of the system


Program parser


Expression parser


Task management (i.e. starting and ending tasks, time slicing tasks)


Aggregate data structure management


Atomic data types management


Operator execution


Built in functions execution


Transport system – moving data between queues


Generation of p code


P code execution


Internal infrastructure  – queues, stacks, aa’s etc

Atomic types


number
(double floating point)


string 


date, time, datetime


boolean
bits (used for option bitmaps, graphics, machine control)


memory – a block of contiguous memory that can be used for implementing a hash table, heap, or as single massive bitmap for graphics, can be used with pointers, can place atomic types in it.
What about Unicode vs. ascii/ebcidic strings

Table operations 


Execute code for each row – syntax?


Filter out records

Sql-like


a b # “orgn_id” => tinner_join => c;


a # “start_date” => tgreatest_in_group => b;  (allows selecting last record without breaching unorder set rule)


 a # “orgn_id” => tsort => b;


a # “max(remun)” => tgroup_by => c

advantages of construct to execute code for all elements


simpler clearer code


less chance of bugs – out-by-one, wrong index variable


could (in theory) be executed in parallel

disadvantages


can’t refer to other rows in table, e.g. x[i]=x[i-1]+a;

fundamental requirements for set operations


“in” operator, i.e. if in(a)


Loop through items in set

Set issues


And, or, not, union, intersection, inner join


Set of numbers, string, objects(having properties), options(i.e. bit yes/no)

Array 100 hint – aggregate of 100 items with indicies 0 to 99, for other types can use non-contiguous numeric keys, e.g. ID number

Operator with long list of arguments only makes sense for +, *, and, or, but maybe no need to implement as can be done in code

Make a note of that initial usage may be ‘if x = 1 or 2 or 3”, but this doesn’t work, must use either “if x = 1 or x = 2 or x = 3”, or “if x in {1, 2, 3}”.

What about excel “sumproduct”, what is it and also it is a real pain to do manually.

Packet-switching mail out into space to arrive at destination model (normal send) vs, circuit switching direct linking pipe model (linked queues), can still be asynchronous if queue can build up at destination, both models have benefits as mental images of what is happening from different perspectives.
Queues/pipes are one-way only and must be declared as input or output queues? Because of triggering rules.

Triggering


Repeat “in” code as long as input queue is not empty


Demand pull from output queue triggering?

At any time a=>b cases a wait if ‘a’ is empty? What about send all? Is it necessary to wait or just continue on?

Array, assoc array are implementation methods, includes array, avl tree, doubly linked lists, hash table, struct etc all as compiler hint only? Or as installable blocks?
Fundamental elements of aggregate structure

(i) indexed by number, string, other (e.g. member of a set), don’t include name as use fred[“bill”] for strucut member, is more consistent and allows run-time selection of struct member using variable, also no problem with variable name/member name conflict

(ii) num of elements if fixed

(iii) type of element

(a) simple/aggregate

(b) mixed/all same

(iv) for strcut, actual text name and type for each entry (same as initializing mixed ass array)

(v) need method of duplicating at run-time for ones that can’t use binary copy

store type string as “fred,bill[mary,100,number[…]” and have operator for ‘type(x)’

stateless vs. state-based
(i) car remote control with one button for open/close is state-dependant 

(ii) remote control with an open and a close button is stateless (check proper word).

Stateless much less prone to bugs (fewer possible paths?) also lends itself to parallel processing, re-entrancy and declarative decription/languages

Atl back and/or forward propogation (at node level) – back propogation, trigger attach to ‘out’ queue throughout program and use demand pull, e.g.

Out


{



In => x;


}

Also


Out


{



Func1 => x;

}

Syncronisation
Guaranteed to arrive in same order sent from single node even if separate statements, e.g. 


A => b


C => b

a arrives before c

But 


A => b => c


D => e => c
no guarantee of order because b, e asynchronous, b and e will execute in parallel, no wait for statement to finihhs before next statement, so –

A => b => t1

D => e => t2

Wait until ?t1 = 1 and ?t2 = 1

T1 => c

T2 => c

Or

T1 t2 => c

Only condition allowed in a ‘wait’ is number of items in queue, because this is the only thing that can change

% => sum

reset to internal defaults

# 1 2 3 4 => sum => x,
i.e. sum of input queue 

No need for end-of-list markets if fixed number of args. 

In theory could parallelise fixed numb args operator on a large input queue but would need to wait until entire input processed

Sending – in concept, assign a sequence number to each item sent and buffer at end and re-arrange into correct order, preserves async not sync and also no long delay in waiting to send until after first item arrived.

Aa mixed; 
not aa ______(blank) as might be a bug

Operator * infix 2 precedence 10 number number external “op_mult”

Define postfix operators +p, *p etc

Instance notes – one instance of called node per instance of calling node unless explicitly started? What about a * b * c => d

A*b + c * d => e  
semantically equivalent to 

((a b => *) (c d => *) => +) => e


Table
array of structures 


Vector 
1 dimensional array of numbers


Matrix 2 dimensional array of numbers

Parallelism on input queue requires

(i) stateless, i.e. no internal data except read-only data

(ii) fixed number of args, no variable/conditional number of args

if inside an ‘if’ or ‘while’, all sends default to send-copy?
‘wait until X’ operator to wait until queue contains an end-of-list item?

Pause execution (if a is a node) for “^a => b” until a.out contains an end-of-list marker (or one item for normal send)? Prevents some asyncronosity but also removes need for execution depedance tree within a node and probably less chance of synronisation bugs. Is still partly asynchronous because can do 

a => node1

c => node2

e => node3

node1 => x


node2 => y


node3 => z

to allow node1, node2 and node3 to execute in parallel.

Options for discard one/clear all


a => null;


a =>;


!!a;

Note that this may not work if a copy-to-stack method is used

User-defined operators with a variable number of arguments can use either an end-of-list marker or the first parameter as the number of arguments, e.g.


# x y z => product;


x y z 3 => product;

the end-of-list marker is probably safer as less chance of mis-match in counting, also compiler can interpret this if necessary.

Define minimum (actual?) scale and precision for ‘number’ type etc

Language definition:

Define semantics/order for (a b->c) (d e->c) -> f where node appears in input list more than once, 

which order are sub-chains evaluated in etc, 

short-circuit of ‘and’ (i.e. evaluate both sides always/only if one true etc)
example of nodes appearing more than once in a single chain

(a b => math:sq) (c d => math:sq) => math:sqrt => math:sqrt;

Use implied rules to resolve ambiguity only when result is obvious (as the meaning of the above chain) and not likely to be an error, otherwise generate error and force brackets/separate statements (e.g. type conversions).

Aggregate – send for total data or invidiual item only

fred[array 100 number]

fred[array 100 [array 200 number]]

fred[struct {“a” number; “b” number}]

fred[aa number]

fred[array dynamic number];

fred[array 100 [struct {“xx” number; “yy” [array 200 number]}]];





fred[10][“yy”][2];

aggregate data structures functions


first, last, next, prev, resize, in, 
delete (delete one entry/entire structrure), new? (i.e. new whole structure)
note new should not be required for atomic types as comes from literals/expressions

for data sent through an external pipe, include the name of the data type and a string containing a full description of the type, receiving end can cache parsed type descriptions.

Case insensitive comparison
“if (x i= y)”

Expression evaluation

As with variables, nodes in a list take one item out to send to next recipient in the list (waiting if necessary), but if send-all then keep retrieving until end-of-list marker (but no end-of-list required for queue variables?)

process left-most recipient first, but send right-most item first (how does this work out, isn’t this a contradiction)

triggering


input queues

repeat as long as input queue not empty

repeat once if ‘%’ sent (but nothing placed in queue)


output queuese



on retrieval, if data in queue then don’t trigger



trigger once to retrieve, if nothing placed in queue then error



if send-all, keep repeating until end-of-list detected in queue

i.e. triggering of input & output queues is the opposite, input queues executed only if non-empty, output queues executed only if is empty (and attempted retrieval).

keep count of end-of-list markets held in a queue to avoid need to scan items looking for end-of-list.

Implanting strings – alloc space of min 10 chars or 1.25 times length, then when copying check length (keep int variable, don’t re-use strlen()) and don’t re-alloc if existing buffer is large enough, could significantly reduce re-allocing.
Two approaches to aggregate data types

(a) define parameters (string/num index, mixed types) etc and let compiler choose implementation, possibly with hints of implementation (tree etc) – implementation independent but complex definitions

(b) installable engines for array, btree etc – simple definitions, but requires the engines be available for portability.

Check standard functions of SQL, SAS, C, Excel, APL, windows, etc and cover the functions, but just include a minimum set of fundamental operations in each area, e.g. file i/o, maths etc

Object orientated – inherit by including data & code from parent node type (run contructors, “init” queue for each node in heirachy)

Sequencing rules: ‘z’ may be executed befor ‘x’ or ‘y’ arrives at ‘a’


x -> a;


y -> a;

z;

% -> x;
trigger without sending data, input list number of items is zero

wait until ??q;


wait until ‘q’ contains an end-of-list item

on a

{


If x > 1



row b -> append -> b

Or maybe


table & x -> table;

}

++x -> x;

node a inherits b c

include code & data from b and c

{

}

Constructors, copy constructors, assignment operators

Operators on bits

refer to bit using bitmap or number? E.g. bit number 10

set (or)

clear (and)

and

or

xor

test bit

shift

rotate?

Block of bits separate from block of memory? (e.g for hash table)

Put data onto block of bits/memory

Single test program that includes every combination of expressions & language features.

Declarative languages: YACC, prolog, regular expressions, SQL, expert systems (also architectural diagrams, chemical formulas, electrical circuit diagrams, sheet music, etc)

Aggregate types


Collection of aggregate types which may be blobs themselves


Selected by number or string name


Multiply address for lookup if all same type

Continguous in memory (array, struct, table – binary chop lookup) or linked list (ass array, avl tree)


Index numbers contiguous/non-contiguous , e.g. numeric keys (just treat as strings as it’s simpler)


May be same type (at given level) or mixed types


Types: Mixed/non-mixed

Type determination: static/dynamic

Size: fixed/variable

Index: data type X. contiguous/non-contiguous


Index number or string or type X


Dynamic/static elements and/or types


Initialize element names & types if static


Number of elements if fixed size


Data types if not variable-mixed (e.g. arrays, structs)


Fixed/non-fixed size

Standard aggregate types


Array


Struct


Avl tree


Queue


Stack

For portability clearly define standard supported types/aggregate types etc

Installable: simple types, operators, aggregate types.

To locate blob


Multiply by size if all same type & contiguous indicies


Add if different types


Search for string, binary chop or tree search if string key

Variable mixed types (queues, tree) fixed mixed types (struct)

Generate compiler warning for slow code e.g. run-time type checking

Operator to get the sending address (i.e. reply node address) of a data item received, how would this work since “in -> x” can only handle numbers if ‘x’ is declared as a number? Maybe necessary to extend the meaning of ‘number’ to be a block of data including the value, the sending address, the type etc.
Have a section on ideas considered but discarded, for

(a) to avoid accidentally re-inventing ideas already considered

(b) because it might be relevant for future changes

